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Abstract. This paper considers the reconstruction error of Gaussian fields, when 
a non-stationary region is present. The non-stationary character is only given 
for spatial data but not for spatio-temporal ones. The reconstruction method is 
specified on the basis of the conditional mean rule when the quantity of samples
is restricted. The method estimates the surface of the optimal reconstruction er-
ror functions in the whole space domain of fields. The ability of the method is 
demonstrated with a simple statistical description of fields on stationary or non-
stationary regions. The Gaussian fields are mainly described by a spatial co-
variance function to describe the nature of Gaussian Markov fields. 

Keywords: Gaussian markov fields, mean square reconstruction error sur-
faces, stationary and non-stationary fields. 

1 Introduction 

The description of the Sampling-Reconstruction Procedure (SRP) of random fields 
has been discussed in many publications [1-7]. It is noticed in the majority of the 
works [1-4] that the probability density function (pdf) of fields is not mentioned. 
Therefore, this situation is the source of many complexities and imprecision in many 
papers devoted to SRP of fields. 

The problem of the estimation of the error reconstruction in the SRP of random 
fields has practically not been solved in two-dimensions yet. One can appreciate that 
the reconstruction error function has been determined in [3, 4] only for a one-
dimensional case, hence the reconstruction error of random processes is defined in-
stead of the reconstruction error of random fields; and only some bounds for the re-
construction error has been evaluated in [5, 6]. 

In the present paper, a generalization of the conditional mean rule [8] is proposed 
for the statistical description of SRP of Gaussian random fields. With this rule the 
estimation of an unknown random variable is specified by the conditional mathemati-
cal expectation. This method provides the minimum of the mean square reconstruc-
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tion error. The description of various kinds of random processes and some Gaussian 
fields has been determined by this rule in [9-11]. 

The reconstruction problem of continuous random fields is described, in this work, 
only in the non-stationary space, that is, when they do not depend on time. In order to 
describe the Gaussian fields completely we use the usual statistical characteristics – 
the spatial covariance function and the mathematical expectation. In this work, the 
Gaussian random fields are specifically defined by the non-stationary spatial expo-
nential covariance function. Non-stationary random fields are required in modelling 
image with complex patterns, in geophysical and environmental applications. For 
these purposes is common to describe spatial data with non-stationary covariance 
structure. 

There has been little progress in the problem of non-stationary fields. Some works 
have been focused to transform non-stationary fields into stationary ones [12, 13]. 

The central differences between our methodology and that presented by the pre-
vious literature are the following: a) the conditional mean rule is applied to describe 
the reconstruction procedure of random fields; b) the optimal SRP algorithms are
analyzed with an arbitrary and limited number of samples; c) the nature of the multi-
dimensional pdf of fields is determined by the Gaussian distribution; d) the stationary
or non-stationary character of Gaussian fields is described in any spatial region with
these properties; e) the minimum reconstruction error surfaces are evaluated on the 
whole space domain. 

2 Description of method 

Generally, random fields F(x,y,t) are considered as a continuous three-dimensional 
stochastic process with space variables (x,y) and the time variable t. This field can be 
completely described by knowledge of its joint pdf 

 p(F1,F2,…,FN; x1,y1, t1, x2,y2, t2,…,xN,yN, tN), (1) 

for all sample points N, where (xi,yi,ti) indicate space and time samples of random 
fields. 

The field is represented by infinity of surfaces as separate realizations. Generally, it 
is difficult to know the high-order joint probability densities of the fields. But, in the 
Gaussian case they can be completely determined by its mathematical expectation 
F(x,y,t)=m(x,y,t) and its covariance function K(x2–x1, y2–y1, t2–t1), where ∙ is the 
expectation operator. 

When we fix an arbitrary set of N samples of the field S={F (x1,y1, t1),  F (x2,y2, t2),  
…, F (xN ,yN, tN)}, the random field is considered as a conditional field where all its 
realizations pass through all fixed points of the set S. The general expressions for the 
conditional mean matrix and the conditional covariance matrix of Gaussian multidi-
mensional random variable are known [8].  

In a variety of systems, the spatial and time domains of the fields are separable so 
that the covariance function may be written as 

 K(x2–x1,  y2–y1,  t2–t1) = Kxy(x2–x1,  y2–y1) Kt(t2–t1). (2) 
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The non-stationary spatial covariance function is determined as a function of the 
fo-llowing parameters: the difference in each spatial coordinates, x2–x1 and y2–y1; and 
the variation of the inverse of covariance radius both on x-axis and y-axis, which are 
represented by x or y, correspondingly. Moreover, it is possible to define the begin-
ning of the non–stationary region of the field on x-axis and y-axis by Lx and Ly. 

With the above-mentioned information the non-stationary covariance function has 
the following representation: 

 Kxy(x2–x1,  y2–y1, x, y)=Knstat(x, y). (3) 

Hence, when we apply the conditional mean rule to two-dimensional Gaussian 
fields, we have the following expressions: 
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where 2(x,y) is the unconditional variance of the initial field and ai j represents to 
each element of the inverse non-stationary covariance matrix: 

 
1( , , , ).xy i j i j x yx x y y    A K

 (6) 

With (4) and (5), we can characterize the surfaces of the optimal reconstruction 
function and the minimum reconstruction error function of the fields. 

Equations (4) and (5) may be useful to analyse stationary and non-stationary ran-
dom fields if the covariance function is characterized with these properties. 

3 Results 

Now we employ the expressions (4) and (5) for some examples, where the quantity of 
samples is sixteen and their Cartesian coordinates are fixed as follows: x1=y1=1.5; 
x2=1.5, y2=0.5; x3=1.5, y3=0.5; x4=1.5, y4=1.5; x5=0.5, y5=1.5; 
x6=y6=0.5; x7=0.5, y7=0.5; x8=0.5, y8=1.5; x9=0.5, y9=1.5; x10=0.5,  
y10=0.5; x11=0.5, y11=0.5; x12=0.5, y12=1.5; x13=1.5, y13=1.5; x14=1.5, 
y14=0.5; x15=1.5, y15=0.5; x16=1.5 and y16=1.5. These samples are arranged in a 
four by four grid. 

In this case, the field is modelled by the exponential covariance function which de-
scribes the Markov Gaussian field. Its mathematical expression is: 

 2
2 1 2 1( , ) exp | | | |nstat x yK x y x x y y         , (7) 
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In this paper, we consider that the exponential covariance function has the trend 
type of non-stationarity. Hence, the inverse of covariance radii is given by the follow-
ing expressions: 

 x = x + x |x – Lx|,  when  x ≥ Lx, (8) 

 y = y + y |y – Ly|,  when  y ≥ Ly, (9) 

where x and y are the initial values of the inverse of the covariance radius on x-
axis and y-axis, respectively. In all examples we consider x=y=1. 

 
Fig. 1. Estimation of the reconstruction error of the stationary random field: a) the error re-

construction surface and b) its contour lines. Sixteen samples are spaced apart to an unitary 
distance. 

The non-stationary character of the fields is limited by: x ≥ Lx and y ≥ Ly. x and y 
are the variation factors of x and y on x-axis and y-axis. Therefore, the modified 
exponential covariance function is given by 
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In the first example, the field is considered with a stationary character. For this 
case, the parameters x and y have the zero value in (9), and m(x,y)= F (x,y)=0 and 
the variance 2(x,y)=2=1 in (4) and (5). The surface of the reconstruction error 
function 2 ( , )x y  of the field is shown in Fig. 1. In Fig. 1, we can observe that the 
reconstruction error function is zero at the location of spatial samples points (xi,yi), 
because in these locations we know the exact value of the field realization. 

However, the reconstruction error function has maximum errors at the centre of the 
interval, that is, among neighbouring samples. These maxima raise if the coordinates 
of the current samples are locate at a bigger distance. Due to the field realization pre-
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sents uniform sampling and has a Markovian property and a stationary character, all 
maximum errors are exactly the same. 

 
Fig. 2. Estimation of the reconstruction error of the random field when a non-stationary re-

gion is limited by the bound x≥L x = 0: a) the error reconstruction surface and b) its contour 
lines. 

In the next instance, the field is considered as non-stationary on the x–axis and sta-
tionary on the y-axis. The variation factor y defined here is zero, so the exponential 
covariance function depicted by (10) is reduced as follow 
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The surface of the reconstruction error function 2 ( , )x y  of the field characterized 
by (11) is shown in Fig. 2. In this case, the field presents a non-stationary region in x 
≥ Lx =0 and the variation factors are  x=0.25 and y=0. We can notice that the 
maxima of the reconstruction error function increase when the value of the horizontal 
coordinate x tends to be far away of the limit Lx, due to the non-stationary behaviour 
of this region. However, if x ≤ Lx =0 the field maintains the stationary character. 

In the last example, the non-stationary behaviour of the field affects the spatial 
structure of the field on the x-axis. 

In Fig. 3 the surface of the reconstruction error function is given when the non-
stationary region is contained into x≥L x=–0.5 and y≥L y=–0.5 and the variation fac-
tors of x and y have the same value: x=y=0.25. It is important to notice that the 
maximum of the reconstruction error is bigger when the spatial coordinates of field 
are far away from the bounds Lx and Ly. 
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Fig. 3. Estimation of the reconstruction error of the random field when a non-stationary re-

gion is limited by x≥L x=–0 . 5 and y≥L y =–0.5: a) The error reconstruction surface and b) its 
contour lines. 

4 Conclusions 

This method provides directly the possibility to describe the stationary and non-
stationary character of random fields when they are characterized by its spatial co-
variance function with stationary and non-stationary properties into any region of the 
field.  

On the basis of this method, it is possible to evaluate the reconstruction error sur-
faces when the location of samples and the spatial covariance function of non-
stationary regions are known.  

This method presents some contributions to describe the sampling-reconstruction 
procedure of stationary or non-stationary random fields such as: images or surfaces 
with varying covariance structure, and the spatial distribution or concentration of 
substances in the subsurface. Moreover, it is possible to evaluate the error reconstruc-
tion of fields or estimate the number and distance of samples in order to provide the 
reconstruction of fields with a specific quality. 
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